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Abstract
Knowledge dissemination in educational settings is profoundly in-
fluenced by the curse of knowledge, a cognitive bias that causes
experts to underestimate the challenges faced by learners due to
their own in-depth understanding of the subject. This bias can hin-
der effective knowledge transfer and pedagogical effectiveness, and
may be exacerbated by inadequate instructor-student communica-
tion. To encourage more effective feedback and promote empathy,
we introduce TSConnect, a bias-aware, adaptable interactive MOOC
(Massive Open Online Course) learning system, informed by a need-
finding survey involving 129 students and 6 instructors. TSConnect
integrates instructors, students, and Artificial Intelligence (AI) into
a cohesive platform, facilitating diverse and targeted communica-
tion channels while addressing previously overlooked information
needs. A notable feature is its dynamic knowledge graph, which
enhances learning support and fosters a more interconnected edu-
cational experience. We conducted a between-subjects user study
with 30 students comparing TSConnect to a baseline system. Re-
sults indicate that TSConnect significantly encourages students to
provide more feedback to instructors. Additionally, interviews with
4 instructors reveal insights into how they interpret and respond
to this feedback, potentially leading to improvements in teaching
strategies and the development of broader pedagogical skills.

CCS Concepts
• Human-centered computing→ Human computer interac-
tion (HCI); Interactive systems and tools;
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1 Introduction
Education serves as a cornerstone for personal growth, societal
progress, and economic prosperity [26]. In this context, instructors
and educators wield significant influence over the acquisition of
knowledge by students and novices, thereby shaping the evolu-
tion of various scientific disciplines [55, 59]. However, discussions
about the shortcomings of educational systems often spotlight a
prevalent cognitive bias known as the curse of knowledge, par-
ticularly pronounced among instructors teaching engineering and
science subjects at the tertiary level [3, 22, 59]. This bias arises
when instructors unintentionally overlook the unfamiliar and un-
certain experiences encountered by learners when grappling with
new concepts [9, 28, 66]. Their deep expertise and profound sub-
ject understanding may hinder effective knowledge transmission,
leading instructors to underestimate the challenges faced by stu-
dents in comprehending new material [3, 59]. This underscores the
importance of relying not solely on faculty opinions but also on
validated student feedback and assessment methods to enhance
learning outcomes [24, 44].

In the preparation phase, instructors meticulously organize the
material to be covered in upcoming classes, drawing from the pre-
scribed syllabus [43]. In addition to introducing new topics, they
often opt to review fundamental or prerequisite concepts, draw-
ing upon their own teaching acumen and insights into student
needs [56]. Throughout lectures, instructors dynamically adapt
their delivery and explanations, integrating real-time feedback
from students [39]. This process involves striking a delicate balance
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between catering to the comprehension levels of the majority of
students and meeting the standard requirements of instruction, as
revealed through interviews with instructors (see section 3). Both
online and in-person modalities are applicable for this approach,
albeit with slightly distinct feedback mechanisms.

Despite the pivotal role of instructors in education, traditional
instructor-centred approaches often fall short in meeting the di-
verse needs and preferences of students [55]. The transmission
of new knowledge faces two significant challenges. First, in the
preparation phase, instructors frequently struggle to accu-
rately assess students’ levels of prerequisite knowledge, ne-
cessitating continual adjustment during lectures. Given the diverse
educational backgrounds and learning paths of students, accurately
gauging their knowledge reserves proves challenging [44]. While
instructors possess a comprehensive understanding of the intercon-
nectedness and context of knowledge within their field, students
typically have only been exposed to a fraction of this domain [41].
Consequently, instructors may overlook gaps in students’ prerequi-
site knowledge, exacerbated by the tendency for students to forget
previously learned material to varying degrees [20]. This oversight
may result in the introduction of more complex concepts before
students have mastered fundamental knowledge, impeding system-
atic learning and potentially undermining student motivation. Sec-
ond, during lectures, instructors may struggle to accurately
gauge the learning progress of their students. For example,
in interactive classroom settings, students may not consistently
provide instructors with effective and genuine feedback, leading to
misunderstandings about classroom dynamics. Students may have
difficulty accurately assessing their own comprehension and articu-
lating the root of their difficulties, often hesitating to ask questions
in class. These issues are further magnified in online teaching envi-
ronments [36]. Moreover, subsequent assessment methods, such as
assignments and exams, frequently struggle to offer specific and
timely feedback on classroom performance.

Technology-enhanced learning (TEL) [53] approaches, integrated
with machine learning techniques, are garnering increased recogni-
tion for addressing challenges from both instructors’ and students’
perspectives [4, 34]. For instructors’ convenience, some studies
have focused on automatically detecting students’ learning sta-
tuses and aggregated feedback during classes [14, 15, 35, 36, 46].
Others have proposed intelligent tutoring agents to support person-
alized learning before or after class, offering suggestions for further
instructions [7, 19, 30, 31]. While these efforts streamline teach-
ing activities and provide recommendations, they primarily target
existing instructional problems rather than enhancing teaching
ability and fostering empathy towards students. In particular, cur-
rent TEL approaches overlook assisting instructors in raising
awareness about the curse of knowledge. Although educational
researchers have summarized various strategies to mitigate this
bias [3, 23, 28, 44], practical application often proves challenging, as
educators are encouraged to refine their approaches by closely ob-
serving students’ cognitive processes in real-world contexts [59]. In
other words, theoretical training aimed at bias awareness may
lose efficacy in actual teaching scenarios [13]. For students,
many learning recommendation systems have been introduced to
generate personalized learning paths, either to expand existing
knowledge [40, 60] or to identify and bridge knowledge gaps in

specific subject areas [6, 42, 65]. However, limited consideration
has been given to identifying prerequisite gaps that hinder
the acquisition of new content, which directly impedes learning
in a more systematic manner. Furthermore, most studies have ne-
glected cognition gaps in student-instructor communication,
where students often struggle to articulate their questions and in-
structors face challenges in comprehension, particularly aligning
with the teaching material.

This study centers on online teaching, which, despite its limita-
tions such as the absence of non-verbal cues, presents significant
advantages for learning data collection and is well-suited for TEL
applications. By utilizing existing course videos and online plat-
forms, instructors can gain insights into students’ needs and prefer-
ences, tailoring teaching content accordingly through the analysis
of student interactions and feedback. Moreover, there is potential to
enrich existing videos to offer students a more structured and con-
textually relevant learning experience. Consequently, our aim is to
establish a loop involving instructors, students, and artificial intelli-
gence (AI) to address biases effectively. To explore instructors’ and
students’ actual information needs and preferences, as suggested
by prior literature [44], and to assess the feasibility of integrating
such information into a comprehensive education recommendation
system, we aim to address two primary research questions: RQ1:
How do instructors and students perceive and cope with in-
structors’ curse of knowledge? and RQ2: What methods are
deemed acceptable formitigating bias and raising awareness?
To address RQ1, we conducted a survey involving 129 students
from various academic backgrounds and degrees, complemented
by expert interviews with 6 instructors across different disciplines
at a local university. Analysis of the survey and interview findings
revealed that the lack of spontaneous student feedback contributes
to the persistence of the curse of knowledge in educational settings.
Based on this feedback, we identified three design requirements
for each user end for the system to address RQ2. Subsequently,
we developed an adaptable online MOOC (Massive Open Online
Course) learning system named TSConnect. This system collects di-
verse leaning and feedback data to help instructors gauge students’
knowledge levels and monitor their learning progress. Additionally,
students can access guidance on prerequisite knowledge required
for their current learning process. In the frontend for students, we
provide an interactive dynamic knowledge graph alongside lec-
ture videos, serving as a novel data collection interface and aiding
systematic learning. In the frontend for instructors, we offer a Video-
Data View and Network View for retrospective review and analysis,
assisting instructors in pinpointing instances where the curse of
knowledge may arise that contribute to learning challenges.

Through the proposed research prototype, we further explored
the following research questions: RQ3: What is the usability and
effectiveness of the support system?RQ4:Howdo students(RQ4-
a) and instructors(RQ4-b) perceive the support system? and
RQ5: What impact does the support system have on current
teaching and learning practices? To address these questions, we
conducted a between-subjects user study involving 30 students hail-
ing from a local university. Students engaged with multiple course
videos under two different conditions: onewith the proposed TSCon-
nect and the other as a baseline condition where students solely
viewed videos and sent textual comments, with their interaction
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data collected for later analysis. By administering post-task surveys
to student participants and comparing their feedback data logs, we
ascertained that TSConnect effectively motivates more frequent and
comprehensible feedback, as evidenced by survey results. Addition-
ally, we conducted expert interviews with instructor participants,
probing their understanding of feedback data and the impact on
their current and future pedagogical practice. This work makes the
following contributions:

• We conducted a survey with 129 students to assess their
perceptions of biased teaching and interviewed 6 instructors
to understand their awareness of the curse of knowledge
and their needs for understanding students.

• We developed TSConnect, an online platform that integrates
dynamic knowledge graph algorithms to enhance the learn-
ing experience and facilitates instructors’ acquisition of stu-
dent feedback.

• We performed a between-subjects user study to evaluate
the usability, effectiveness, and user interaction patterns
of TSConnect, and investigate its potential implications for
educational practices.

2 Related Work
2.1 The Curse of Knowledge
Extensive research has delved into the phenomenon known as the
Curse of Knowledge, identifying it as a cognitive bias prevalent
across various domains [12, 49, 62]. Within the realm of communi-
cation, individuals often subconsciously assume that their counter-
parts possess the necessary background knowledge to fully grasp
their message [9, 66]. This tendency is particularly pronounced
in educational contexts [23], where the curse of knowledge can
significantly hinder effective teaching and learning [59]. Heath et
al. [28] have defined this phenomenon as the disconnect between
educators, who possess knowledge, and learners, who lack it. Specif-
ically, instructors frequently overestimate their students’ familiarity
with the subject matter being taught [44, 49]. Previous research
has attributed this discrepancy to instructors’ heavy reliance on
their own expertise [49, 59], insufficient consideration of students’
perspectives [3, 59], or a lack of diagnostic cues regarding students’
existing knowledge [44, 57].

To overcome this curse, Heath et al. [28] outlined six key factors
to consider. Expanding upon this research, Froyd et al. [23] devel-
oped four strategies aimed at increasing awareness of the curse of
knowledge bias and supporting faculty professional development.
Ambrose et al. [3] proposed three components to mitigate the curse
and identified seven evidence-based principles for enhancing ef-
fective learning. Similarly, Pipia et al. [44] conducted a qualitative
study involving students and instructors to gather insights into
educational processes and the operationalization of these seven
principles in classroom settings. While physics instructors have
access to a wealth of educational research providing insights into
students’ cognitive processes and common challenges [38], these
resources may be insufficient and susceptible to inertia.

This study aims to assist instructors in promptly recognizing stu-
dents’ confusion and uncertainty, thereby facilitating improvements
in teaching methodologies. Drawing inspiration from theoretical re-
search [44], we address the educational dilemma where instructors

may lack awareness of students’ prior knowledge and requirements,
overlooking their actual capabilities and the need for further clari-
fication when introducing new concepts. To achieve this objective,
we advocate for the implementation of a human-machine collabo-
ration approach, aimed at strengthening the connection between
students and educators.

2.2 Technology-Enhanced Learning and
Educational Recommendation Systems

Technology-enhanced learning (TEL) includes a wide array of
computer-based technologies aimed at facilitating learning [53]. In
line with our research objectives, we narrow our focus to relevant
literature on educational recommendation techniques designed to
support learning and teaching activities.

In conventional settings, students typically need to manually sift
through predefined syllabi to identify relevant learning materials,
whereas TEL can leverage machine learning techniques to recom-
mend supplementary learning materials from both internal sources
(e.g., lecture materials [63]) and external sources (e.g., online arti-
cles and videos [64]). Moreover, prior research has demonstrated
the potential to design personalized learning pathways for learn-
ers. According to Adomavicius and Tuzhilin [1], recommendation
systems fall into three primary categories: Content-based systems
recommend items based on the relationships between knowledge
components (e.g., as seen in the work of Murayama et al. [40]).
Collaborative Filtering systems recommend items based on the his-
torical preferences and profiles of similar individuals (e.g., demon-
strated by Rafaeli et al. [45]). Hybrid approaches integrate both
collaborative and content-based methods (e.g., as shown in the re-
search of Salehi et al. [50]). Additionally, contextual information
such as learner feedback can enhance the learning process [18].
This feedback can be gathered explicitly through methods like ques-
tionnaires [40] or implicitly through measures such as time spent
on tasks and click history [60].

Moreover, various recommendation techniques cater to instruc-
tors’ needs. For instance, Liu et al. [35] proposed a smart learning
recommendation system that utilizes sensor data to suggest effec-
tive learning activities in the classroom based on students’ current
learning states. Ma et al. [36] integrated adaptable monitoring and
retrospective interfaces with computer vision algorithms to infer
students’ remote learning status for instructors. In the context of
flipped classrooms, AI chatbots [19] can engage in conversations
based on subject matter, interact with students as tutors, and pro-
vide teaching strategies and tips for instructors preparing classroom
materials. Unlike these approaches, which directly aid instructors
in identifying and resolving issues, our objective is to raise instruc-
tors’ awareness of the curse of knowledge and assist in fostering a
student-centered teaching approach.

While the aforementioned work can assist both instructors and
learners by providing recommendations for subsequent activities or
suggesting alternative options, it is also imperative to address the
knowledge gap in the subject matter itself. To support after-class
knowledge review, Bauman et al. [6] introduced a methodology for
identifying unmastered knowledge and recommending remedial
learning materials to improve performance in final exams. Okubo
et al. [42] presented a personalized review system that recommends
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materials tailored to the learner’s level of understanding. In con-
trast to post-class methods, Zheng et al. [65] identified learning
shortfalls at an early stage by tracking in-class emotions. Beyond
addressing post-learning mastery gaps is crucial, identifying prereq-
uisite knowledge gaps is equally essential for sustainable learning.
Therefore, we propose a novel approach to derive a past-oriented
learning recommendation that emphasizes prerequisite knowledge.

2.3 Teacher Education and Teaching Skills
“Skillful teachers are made, not born” [51]. Becoming an excellent
educator entails not only the acquisition of a broad knowledge
base but also the proficiency in conveying knowledge to students
in a clear and systematic manner. In the 21𝑠𝑡 century, essential
skills like critical thinking have surpassed rote memorization as the
primary focus of education [17]. The global adoption of Learner-
Centred Pedagogy (LCP) [52], which emphasizes understanding
and addressing the unique needs and perspectives of each student,
has heightened the expectations placed on instructors [16]. Teacher
education is instrumental in equipping educators with the skills
necessary to effectively apply LCP principles. It is not sufficient
to merely adopt the outward forms of LCP, such as questioning
techniques; instructors must fully integrate its substance into their
teaching practices [10]. Numerous publications within the educa-
tion domain provide instructional guidance for instructors [2, 5, 51].
These resources are particularly beneficial for pre-service instruc-
tors, providing them with experiential knowledge that extends
beyond their personal teaching experiences.

The existing literature on instructors skill development includes
a variety of interventions [8], tools [21], and frameworks [11],
along with methodologies such as peer observation [32] and self-
assessment [33]. Reflective practice is highlighted as a pivotal el-
ement within instructors education, where detailed and specific
feedback is essential for fostering sustained and substantive im-
provements through in-depth analysis and introspection [47, 48].
Recent studies also suggested that large language models (LLMs)
could enhance instructors’ reflective capacities and encourage in-
novative practices [58]. However, the literature cautions against
enforced reflection and rote thinking, which may fail to produce
genuine behavioral changes in instructors and could even introduce
social desirability bias [29].

Reflective practice requires continuous and timely feedback.
While peers and third-party expert observations offer valuable
objectivity, they could be costly and demand extensive prepara-
tory training, which poses challenges in resource-constrained re-
gions [33]. Our work aims to enrich existing MOOC platforms by
incorporating more granular analyses of student learning behav-
iors and feedback. The interactive visualizations we provide are
designed to encourage instructors to engage in deep reflection and
introspection. Unlike previous studies [54], our approach extends
beyond the examination of video clickstream data by integrating
student feedback on key concepts within the videos, offering a more
comprehensive and analytical perspective.

3 Formative Study
This study deals with the curse of knowledge bias in teaching by
TEL technologies, aiming to enhance the teaching effectiveness

and foster greater alignment between instructors and students. We
investigated RQ1 and RQ2 through student surveys and instructor
interviews, informing our system design.

3.1 Survey Study of Students
3.1.1 Survey Protocol. Based on the findings from [44] and infor-
mal discussions with some students, we crafted a survey to collect
student’s experiences with online classes. The survey covered demo-
graphic information, learning challenges, communication patterns
with instructors, and attitudes toward learning data analytics. Fol-
lowing IRB approval, we distributed the survey via social media to
participants with minimum high school education. Responses were
excluded if incomplete or completed under 50 seconds.

3.1.2 Respondents. We received 129 valid responses from students
(65 male, 60 female, and 4 who preferred not to disclose). The
respondents included 17 high school students, 72 undergraduates,
35 master students, and 5 Ph.D. students. Excluding the high school
participants, the respondents represented a wide range of grades
and majors, including science, medicine, engineering, business,
humanity, and other fields. All students had prior experience with
online learning.

3.2 Semi-structured Interview of instructors
3.2.1 Interview Protocol. As detailed in Table 2, instructor inter-
view explored participants’ class preparation methods. Drawing on
student survey results, discussions focused on scenarios related to
the curse of knowledge, as well as their coping strategies and spe-
cific requirements for TEL tools. We employed Braun and Clarke’s
six-phase thematic analysis framework to analyze the interview
transcripts. Initial coding by one author underwent team review
for completeness. Two authors then iteratively refined themes until
reaching consensus on key findings.

3.2.2 Participants. A pilot discussion with an extra instructor in-
formed the development and refinement of the interview protocol.
Subsequently, 6 instructors (I1∼6, 3 males, 3 females) participated
in formal interviews, who comprised two novice instructors (𝑀 = 4
years experience) and four experienced instructors (𝑀 = 26.8 years).
As shown in Table 1, participants represented diverse disciplines
and institutions. All participants had experience using online edu-
cational platforms or tools due to the impact of Covid-19.

ID Gender/Duration Instructor Type Major
I1 Male/27 high school Chemistry
I2 Female/30 high school Geography
I3 Male/4 higher education Mathematics
I4 Female/30 higher education Machine Learning
I5 Male/4 higher education Computer Science
I6 Female/20 higher education Tourism

Table 1: Demographic information of interview instructors.
Duration denotes the number of years a participant has
taught as an instructor. An instructor of higher education
implies teaching personnel affiliated with a university or a
similar tertiary-level educational establishment.
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Category Question
Demographic What is your major area of specialty and what courses do you typically instruct?

How long have you been in the teaching profession?
What is your overall process for preparing a course and an individual lessons respectively?
How do you design and structure your lecture content?

Procedures How do you gauge students’ prior knowledge and their understanding of new concepts?
How do you get and utilize students’ learning feedback?
How do you balance your teaching goals and students learning?
Have you ever ignore students’ basic knowledge levels when preparing lessons?

Teaching issues & Have you ever misjudged students’ grasp of a certain part of the lesson content?
potential solutions Have you ever faced challenges in understanding student feedback?

What unique challenges exist of online environment, excluding hardware-related issues?
Feedback data How do/will you utilize interaction data of MOOC videos to help you solve the teaching issues?

What type of feedback data can better help you to adjust your learning?
Expectation What functions do you want to add or improve to the current MOOC system?

Table 2: Interview with instructors.

3.3 Findings
This section presents six key findings from surveys and interviews
on the curse of knowledge in the current teaching process. Build-
ing on the foundational insights of [44], our study offers a deeper
exploration into the persistent nature of this bias, even as both
instructors and students are increasingly aware of its impact.

3.3.1 [Finding 1] The Necessity of instructors’ proactive as-
sessment of learning status. Survey results (as shown in Table 3)
show that students’ average self-assessment of learning effort is
3.29 (SD=0.92) on a 5-point scale, with 1/3 frequently frustrated.
Over 1/2 struggle to keep up, and a quarter hesitate to communicate
challenges. More than 1/2 feel a mismatch between comprehension
abilities and instruction pace. Interview analysis reveals that despite
instructors’ encouragement, only a subset of students proactively
interact, leaving instructors with limited, potentially biased feed-
back. Instructors often rely on observing students’ expressions and
use questioning and quizzes to refine their teaching strategies when
necessary. However, this observation can be vague, as I5 expressed:
“When I see students bowing their heads, it could either mean the
lecture is too simple and they’re bored, or it’s too fast and complex
that students don’t understand. I need to interact with the students
immediately and ask if they can follow.”

Other methods, such as assignments, exams, and teaching evalu-
ations, serve as post-hoc tools for gathering student feedback, but
these often fail to provide timely and specific insights. For exam-
ple, I2 mentioned, “Not every class ends with homework... and the
homework doesn’t cover everything.” I1 added, “If homework is done
incorrectly, the worst-case scenario is that nothing was learned, but it
might as well be due to not reviewing notes in time, it depends.” Simi-
larly, I3 noted, “After class, even after an hour, students’ recollections
of their own questions become very vague.”

3.3.2 [Finding 2] Learning challenges affect the willingness
to communicate with instructors. All instructors interviewed
unanimously observed that students with lower academic perfor-
mance are less likely to initiate communicationwith them. Similarly,
survey data shows a strong correlation between the frequency of

difficulties encountered in course learning and the students’ willing-
ness to communicate these issues to instructors(𝑟 = 0.96, 𝑝 < 0.011).
Regardless of their inclination to provide feedback, ‘Feedback mech-
anism deficiency’ (Willing: 37/88 (42.0%); Unwilling: 24/31 (77.4%))
and ‘Self-diagnosis difficulty’ (Willing: 42/88 (47.7%); Unwilling:
11/31 (35.5%)) were identified as the two primary challenges faced
by students.

Open-ended survey responses suggest that students prefer hav-
ing off-public or indirect channels to provide feedback to their in-
structors (8/129, 6.2%). This preference aligns with the instructors’
observation from the interviews, where they noted that students
may hesitate to ask questions in class or directly communicate
with instructors due to apprehension or shyness. While instructors
often infer students’ struggles from their expressions, as I6 noted,
“Without targeted questions, it is difficult for me to guess where the
real problem lies. I either repeat the key points or re-explain based on
my understanding... If students want to learn, they need to actively
communicate with me. I have tried to probe once or twice, but if there
is no response, I believe I have fulfilled my duty.”

3.3.3 [Finding 3] Expertise in recognizing student under-
standing. In interviews, experienced instructors (I1, I2, I4) reflected
on how their decades of teaching have built their confidence in
identifying common student errors and comprehension difficulties.
When faced with unexpected questions, they adeptly use progres-
sive questioning to guide students in uncovering the root of their
misunderstandings. As I2 noted, “It’s not possible to fully grasp what
the student is thinking right away; sometimes I really don’t under-
stand their questions, but I’ll break down the issue into smaller, simpler
concepts for confirmation.”

In contrast, novice instructors (I3, I5) expressed more uncertainty
regarding student performance and shared feelings of pessimism

1𝑟 is the Pearson Correlation Coefficient. We excluded 41 responses from the analysis
where participants reported ‘Never’ have comprehension problem and had a ‘Neu-
tral’ stance on their willingness to provide feedback, resulting in a sample size of
𝑛 = 90. Also, to improve the sample size, survey responses were categorized into two
groups based on the willingness to provide feedback: those willing to provide feed-
back(‘Strongly Disinclined’ and ‘Disinclined’) and those unwilling(‘Strongly Inclined’
and ‘Inclined’).
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Do you struggle to comprehend new knowledge and maintaining pace with the curriculum progression?
Never Seldom Sometimes Often Always

Are you willing to Strongly Disinclined− 1 0 1 0
provide feedback Disinclined− 11 9 6 3
to your instructor Neutral 10 8 17 4 0
regarding your Inclined+ 18 19 7 2
difficulties? Strongly Inclined+ 8 3 2 0
Student difficulties in comprehending Student challenges in providing feedback
Rapid pace of instruction 57/129 (44.2%) willing unwilling
Incomprehensible instructional logic 28/129 (21.7%) Feedback mechanism deficiency 37/88 (42.0%) 24/31 (77.4%)
Unawareness of teaching plan 26/129 (20.2%) Lack of instructor responsiveness 15/88 (17.0%) 3/31 (9.7%)
Insufficient domain knowledge 65/129 (50.4%) Inefficacious instructor’s solution 18/88 (20.4%) 3/31 (9.7%)
Insufficient prerequisite knowledge 44/129 (34.1%) Self-diagnosis difficulty 42/88 (47.7%) 11/31 (35.5%)
Perceived weak comprehension abilities 30/129 (23.3%) No Learning Impediments 20/88 (22.7%) 3/31 (9.7%)
Forgetting previously acquired knowledge 42/129 (32.6%)

Table 3: A total of 129 valid responses were obtained in the survey study of students.

and helplessness when students encounter learning obstacles. I3
stated, “Their backgrounds are so diverse, and they’re hesitant to
communicate proactively, it’s always challenging to gauge the depth
and pace of my lectures.” I5 mentioned, “If students don’t understand,
I’ll explain it again. But if they still don’t get it, I’m at a loss for
what to do next.” Unlike more experienced counterparts, novice
instructors tend to place greater emphasis on students’ self-study
habits and show less empathy in connecting with students.

3.3.4 [Finding 4] Ensuring majority comprehension within
teaching constraints. Instructors work within the constraints of
a fixed syllabus, allowing some flexibility to adjust their teaching
styles but requiring all content to be covered by the end of the
semester. The more detailed the explanation and the more interac-
tion with students, the more time-consuming the process becomes.
When facedwith a heavy teaching load or tight schedule, instructors
often prioritize ensuring the learning experience of students with
average and above-average performance. Students with weaker
foundational knowledge and understanding are typically catego-
rized as a special group, whose needs are not addressed within the
regular teaching plan. As I6 remarked, “I don’t have the time and
energy to delve into their difficulties”. I5 added, “I will announce the
basic knowledge used in the course in advance, and students need to
fill in the gaps in their spare time.”

Additionally, I3, I4, I5, and I6 emphasized the need for aggre-
gated feedback to better focus on common issues and adjust the
teaching content and pace accordingly. I1, I2, I3, and I6 expressed a
preference for real-name feedback. When asked for the reason, it
was found that, besides high school instructors (I1, I2) needing to
track each student’s learning progress, instructors generally need
to assess how to address problems based on students’ background
information. For instance, I1 pointed out, “Students at different levels
have different depths of problems and require different measures.” I2
also noted, “If a good student makes a mistake, it means most students
do not understand my explanation, and I need to adjust.”

3.3.5 [Finding 5] The impact of prerequisite knowledge on
communication. Survey responses indicate that 80% of students

struggle with learning new information due to the influence of prior
knowledge. This challenge arises from unfamiliarity with related
field (65/129, 50.4%), gaps in prerequisite courses (44/129, 34.1%),
or forgetting essential basic knowledge (42/129, 32.6%), making it
difficult for them to grasp new concepts. I2 to I6 acknowledged this
issue. I2 noted, “It greatly affects classroom efficiency and learning
outcomes. If students haven’t properly grasped the basics, they’ll
struggle to keep up with what I’m teaching. I’m also seeking methods
to address this issue.”

The lack of transparency regarding gaps in prior knowledge
between instructors and students, combined with communication
barriers, can create significant teaching challenges. I5 shared an
example, “Once I directly used multivariate Gaussian distribution
in my lecture, assuming students to be familiar with it from their
stats class, however, students couldn’t follow. Later I learned that this
distribution had only been briefly introduced, not taught in detail.”

Moreover, when students lack prerequisite knowledge, they of-
ten struggle to clearly articulate their difficulties to instructors. I4
observed, ”It hinders the formation of their knowledge network. They
might see there’s a problem but can’t pinpoint the cause.” Students
frequently struggle to identify their own knowledge gaps (I2, I3, I4)
and often present disorganized questions (I5).

3.3.6 [Finding 6] Embracing online platforms for enhanced
learning. Although instructors acknowledge that online teach-
ing may hinder their ability to observe students’ learning status,
they also emphasize its benefits, including abundant teaching re-
sources, flexible scheduling and location, a variety of feedback
channels, and support for personalized learning. Instructors often
integrate features of online education platforms into their offline
teaching, including sharing supplementary materials, posting tests,
and collecting feedback. However, to use these platforms effectively,
instructors must manually configure many functions in advance.
Some platforms and tools even require specialized smart classrooms,
which can be cumbersome and complex, with high hardware de-
mands, hindering the deep integration of promising TEL tools.
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Survey results indicate that students are generally willing to
use online platforms proactively to mark and communicate con-
tent they don’t understand (non-anonymous: 93.0%, anonymous:
99.2%), share their interactions with course videos with instructors
(non-anonymous: 82.9%, anonymous: 98.4%), and utilize TEL tools
to facilitate communication with their instructors (97.7%). Offer-
ing diverse feedback channels and maintaining anonymity might
encourage more interaction between students and instructors.

3.4 Design Requirements
Based on the six key findings, our work integrates AI methods and
visualization strategies into online education platform interfaces
tailored for students and instructors. This integration aims to en-
hance learning environment and feedback loop, providing better
support for comprehensive and nuanced analysis of that feedback.
The specific design requirements for the student [DS] and instructor
end [DI] are outlined below:

3.4.1 Student End.

[DS1] SupportMultiple FeedbackChannels.According to [Find-
ing 6], Online learning platforms excel at gathering varied
student feedback. They enable students to actively comment
and question while also implicitly track behavioral patterns.
Anonymity in feedback can alleviate students’ psychologi-
cal burden, encourage more proactive responses, and help
instructors promptly grasp students’ learning status. Addi-
tionally, [Finding 1] indicates the student interface should
motivate students to provide more detailed feedback.

[DS2] Facilitate Incremental Learning. Students who struggle
with basic concepts often face challenges with advanced
material, which hinders their overall subject understand-
ing. According to [Finding 5], the student interface should
identify and recommend the prerequisite knowledge needed
for each learning activity to support gradual and effective
learning progression.

[DS3] Assist Students in Self-Diagnosing Their Knowledge
Gaps. Students lacking prerequisite knowledge or encounter-
ing complex explanations may struggle to learn. [Finding 2,
4&5] show that enabling students to identify the root causes
of these challenges helps them resolve issues independently
and provide clearer, more precise feedback to instructors.

3.4.2 Instructor End.

[DI1] Automatically Summarize and Organize Student Feed-
back. Considering [Finding 4], the system design should
ease the burden on instructors by streamlining the collection
and analysis of student feedback. It should extract common
themes and highlight recurring issues to prevent information
overload, taking advantage of the online platformmentioned
in [Finding 6].

[DI2] Correlate Student Feedbackwith LectureContent.Given
that feedback can be delayed [Finding 1], the system should
provide relevant contextual information to facilitate precise
analysis. Referring to [Finding 3], it should also help narrow
down issues to avoid difficulties in tracing problem origins
due to factors like poor memory [Finding 5].

[DI3] Enhance Teaching Skills ThroughRetrospective Analy-
sis. Responding to [Finding 2&3], the system should support
instructors, particularly less experienced ones, in uncover-
ing their unconscious misunderstandings about students and
developing empathy towards students.

4 System
4.1 System Overview and Architecture
In line with design requirements [DS]s and [DI]s from our survey
and interviews, we proposed TSConnect, an interactive online learn-
ing system to enhance communication between instructors and
students, accessible via PC or tablet. TSConnect comprises three
main components (Figure 1): a backend Engine, a React web-based
student end and an instructor end: 1) The back-end engine pro-
cesses course videos on a Flask server, extracting a knowledge
dependency network to establish a feedback channel. All feedback
is stored in an SQLite3 database and managed by an Express server.
2) The student end (Figure 3) captures diverse student feedback
using pseudonyms for login, uploading the data to the database. 3)
The instructor end (Figure 4) retrieves and visualizes aggregated
student feedback, aiding in teaching outcome analysis. The system
focuses on enhancing existing feedback mechanisms to improve
student engagement and teaching quality, rather than creating a
new online education platform. TSConnect is designed for seamless
integration into any existing online education platform.

4.2 Video Processing and Graph Construction
Upon uploading pre-recorded course videos to the database, in-
structors can manually annotate chapters. The backend server then
processes these annotated videos through the following steps, ulti-
mately generating a knowledge network for students to use on the
TSConnect learning platform.

Video Keyframe Extraction. To alleviate the burden of man-
ually providing written course materials, the server employs an
algorithm based on maximum inter-frame difference to automat-
ically detect and extract keyframes from video. These keyframes
replace lecture notes and form the basis for identifying and extract-
ing knowledge concepts. The server computes the frame difference
between consecutive frames to determine the average pixel-wise
difference intensity. Frames with local maxima in this intensity are
identified as keyframes. To avoid redundancy, the server smooths
the average intensity sequence using a Hanning Window, retaining
only one frame from each group of similar keyframes (threshold =
0.9). The server then employs the PaddleOCR PP-OCRv32 model
to perform OCR recognition on each keyframe, generating a text
sequence for comparison.

Knowledge Concept Identification. Instructors have the op-
tion to manually mark multiple chapters within a video upon up-
load, facilitating the grouping of keyframes. The server processes
these keyframes by analyzing the text data chapter by chapter
through the GPT-4 Turbo API3 (temperature=0.4). To enhance the
contextual awareness of the language model (LLM) and improve
the accuracy of concept extraction, we first require the LLM to
identify subtopics within each chapter, followed by the extraction
2https://github.com/PaddlePaddle/PaddleOCR
3https://platform.openai.com/docs
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Figure 1: The system architecture includes a central backend engine and dual frontend interfaces: a student end for pseudonym
video viewing and feedback, and a teacher end for retrospective analysis insights.

of concepts (termed ‘course nodes’) with prerequisite dependen-
cies closely related to the chapter’s topic, rather than conducting
frame-by-frame extraction. All course nodes and their relationships
from each chapter are unified to create a global set for the entire
video, resulting in a comprehensive knowledge dependency graph.
In addition to directly merging identical concepts, the server uti-
lizes the Wikipedia API4 to assist the LLM in resolving concept
ambiguities. Furthermore, the server retrieves introductory content
from Wikipedia, which is subsequently simplified and refined by
the LLM to serve as foundational explanations for the related con-
cepts. Not all extracted knowledge concepts exhibit prerequisite
dependencies; for instance, while both ‘Newton’s Second Law’ and
‘Law of Conservation of Energy’ rely on ‘foundational principles of
classical mechanics’, they are considered parallel knowledge within
the dependency graph without direct connections. To prevent iso-
lated nodes after the global set operation, the server instructs the
LLM to associate at least one prerequisite concept (referred to as
‘association nodes’) with any course node that has a degree of zero,
based on the chapter’s theme. For acquiring prerequisite knowledge
for each course node, we adopt a straightforward approach: the nec-
essary prerequisite knowledge for each concept should be closely
tied to its definition, thus influencing the student’s understanding.
Consequently, the server extracts hidden prerequisite knowledge
from the aforementioned knowledge explanations. If a prerequisite
concept has already appeared as a course node or association node,
the corresponding course node will be labeled instead of being
repeated as an additional prerequisite node.’

4https://github.com/goldsmith/Wikipedia

Dependency Graph Construction. The skeleton of the knowl-
edge dependency graph is composed of disambiguated course nodes
and association nodes, with directed edges representing the pre-
requisite relationships between them. We define 𝐺 = (𝑉 , 𝐸) as a
directed acyclic graph (DAG), where 𝑉 is a non-empty set of nodes
formed by the disambiguated concepts, and 𝐸 is the set of directed
edges representing dependencies between these nodes. For any
edge 𝑒 ∈ 𝐸, it connects a pair of nodes (𝑢, 𝑣) such that 𝑢 is a prereq-
uisite for 𝑣 , depicted as 𝑢 → 𝑣 when understanding or applying 𝑣
requires prior comprehension of 𝑢. However, as shown in Figure 2,
the initial DAG can be complex and confusing, making it difficult for
users to quickly identify prerequisite relationships. To address this
issue, the server leverages the transitivity of dependency relations
to eliminate redundant cross-level edges that could create cycle
structures. Additionally, inspired by the work of [61], we implement
layered graph layouts in topological order and arrange nodes by
out-degree from left to right within each layer to minimize edge
crossings. Once the skeleton is established, the server employs a
hexagonal encoding for all nodes, determines the coordinates for
the skeletal nodes, and fills the surrounding space with prereq-
uisite nodes. Given that the average number of prerequisites per
skeleton concept is less than 15, a two-layer hexagonal structure
surrounding each skeleton node can accommodate up to 18 nodes.
Therefore, we set a minimum distance between skeletal nodes equal
to five hexagon side lengths. The server first generates a hexagonal
lattice to define the central coordinates of the skeleton nodes, then
draws Voronoi diagrams to appropriately fill in the prerequisite
knowledge. The resulting knowledge dependency graph will be
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Figure 2: The backend pipeline for dependency graph construction

detailed in subsection 4.3 and subsection 4.4, which will include
specific visualization encoding and interaction mechanisms.

4.3 Student End
4.3.1 CourseVideoPlayer. Building on [54], we generate second-
by-second counts for play, pause, and rate change events to collect
click-stream data. This method effectively communicates students’
natural learning behaviors to instructors, acting as a passive feed-
back channel [DS1] that provides objective contextual information.
Similar to conventional MOOC platforms, we include a chapter
progress bar beneath the video player to facilitate quick navigation.

4.3.2 Comment Section. Students can ask questions, share opin-
ions, and delete previous comments through the Comments Section
[DS1]. Comments are displayed chronologically with video times-
tamps and include chapter titles and content.

4.3.3 Network View. To support structured learning [DS2], we
design a Network view that visualizes a knowledge dependency sub-
graph created by the back-end server, as described in subsection 4.2.
This subgraph aligns with the currently playing chapter by remov-
ing all non-essential nodes from the global graph-those irrelevant or
not prerequisite to the current chapter’s concepts. Each node in the
view represents a knowledge concept using a hexagonal glyph, with
colors signifying attributes. Purple hexagons represent course
and association nodes, which form the core structure of the graph
and are referenced in the current course video 5. Gray hexagons
denote prerequisite nodes, corresponding to concepts not covered
in the current video but necessary for understanding the course
content. When users interact with knowledge in the Knowledge
View and mark it, the corresponding purple and gray nodes turn
light orange and dark orange respectively. Clicking a node
highlights the path of dependencies, clarifying knowledge relation-
ships (Figure 3-C). Hovering over a node displays the concept name,
while more detailed information appears in the Knowledge View.

Additionally, when all marked concepts are highlighted in the
Network View, the resulting topology can serve as an indicator,
pinpointing areas where students may be encountering difficulties.
This visual representation helps students engage in self-reflection
and more effectively summarize their learning challenges [DS3].

5Association nodes are minimally used in the current course video, so they are simpli-
fied in the presentation to reduce cognitive load.

4.3.4 Knowledge View. As a complement to the Network View,
the Knowledge View offers more detailed information about indi-
vidual knowledge concepts, including definitions and correspond-
ing quizzes, which respectively help students reinforce their un-
derstanding, and enable self-assessment [DS3]. Based on student
expectations gathered from our formative study (Appendix B), an-
swers and explanations are initially hidden to encourage critical
thinking before revealing solutions. At the bottom, a 4-point reflec-
tive scoring module allows students to self-evaluate their mastery
of the concept (Table 4), serving as the third feedback channel in
TSConnect [DS2].

4.4 Instructor End
4.4.1 Course Video Player. The Course Video Player enables in-
structors to review the original video content [DI3] with a horizon-
tal chapter progress line (Figure 6) Interactions with the VideoData
View highlight the current chapter node, linking feedback to the
video’s sequence [DI2].

4.4.2 VideoData View. This view organizes key interaction data
between students and the course video in chronological order [DI1],
capturing metrics such as total play and pause counts, average play-
back speed, and the number of comments. Both plays
(in purple) and pauses (in blue) are represented as area
charts, with plays accumulating from the lower edge and pauses
from the upper edge. The Speed (in red) is depicted by a
line graph, using the midline as a baseline for 1𝑥 speed, visualizing
playback rate fluctuations across all students. Additionally,
The number of comments (in gray) is shown as a line chart growing
from the lower edge, representing the cumulative comment count.
This intuitive visual representation enables instructors to immedi-
ately recognize potential issues in their instruction, guiding them
toward targeted exploration and improvements [DI3].

TheVideoData View offers two interactivemodes: 1) TooltipMode:
Hovering displays detailed feedback statistics for the selected time
point (Figure 5), with the corresponding chapter node highlighted
on the chapter timeline. Clicking the node allows the Course Video
Player to jump to that moment. 2) Range Selection Mode: Users can
drag to select a time range, which highlights the corresponding
chapter node and brings the comments within that range into focus
in the Comment Section [DI2].

4.4.3 Comment Section. Instructors can view student feedback
through three sorting options: 1) Sorting by submission time al-
lows instructors to find out the most recent feedback, useful when
reusing the same video across multiple student cohorts. 2) Sorting
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Figure 5: The Tooltip mode of the VideoData View. Upon
mouse hover over the view, the system displays detailed feed-
back statistics while simultaneously highlighting the corre-
sponding chapter title for the given temporal point.

Chapter Name

Chapters (start time)
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Figure 6: A chapter indicator under the video player.

by video timestamp links feedback chronologically to course con-
tent, allowing instructors to efficiently locate relevant comments
through the VideoData View and analyze the feedback in context.
3) Sorting by anonymous student ID enables instructors to track
specific issues raised by individual students, facilitating targeted
analysis.

4.4.4 Network View. The Network View for instructors presents
a complete knowledge dependency graph. The backend server cal-
culates overall scores for each concept by aggregating students’
self-evaluation scores, ranging from 0 (Never Heard or Unfamiliar)
to 3 (Completely Mastered) (Table 4), then mapped into correspond-
ing color intensity on instructor end. Nodes darken with more
feedback, particularly for concepts with commonly weaker mastery.
By visualizing the distribution of these scores across the knowledge
dependency graph, instructors can easily identify common areas
where students face difficulties [DI2]. Additionally, the relation-
ships between knowledge nodes help instructors analyze potential
root causes, fostering more empathy towards students [DI3]. For
example, they may realize whether they have overlooked students’
understanding of prerequisite concepts, or whether challenges stem
primarily from the current knowledge being taught.

Score Icon Description
3 Never heard before or Unfamiliar
2 Familiar but not Proficient
1 Basic Comprehend
0 Completely Mastered

Table 4: A legend and conversion rule for the scoring module
in the Knowledge View in Student end.

5 User Study
To address RQ3 and RQ4-a, we conducted a between-subjects
user study with 30 student, following institutional IRB approval.
Students participated in one professional course session using the
proposed TSConnect system, with a baseline system as control.
Additionally, we interviewed 4 course-related instructors, using the
feedback data from TSConnect, to explore RQ4-b and RQ5.

5.1 Conditions
We performed a comparative analysis between the student interface
of TSConnect and a baseline system, which represents a traditional
MOOC platform with basic features like video lecture playback
and a text-based comment section. Unlike TSConnect, the baseline
system lacks two key components: theNetwork View and the Knowl-
edge View. Additionally, participants using the baseline systemwere
provided unrestricted access to external knowledge sources, such
as Wikipedia and other online encyclopedias.

5.2 Participants
Following approval from the university’s IRB, we recruited 30 stu-
dents enrolled in an algorithm analysis course at a local university.
The participants, comprising 16 male and 14 female students with
an average age of 22.9 (SD = 4.1), included 14 senior undergraduates
and 16 graduate students. Participants were randomly assigned to
either the baseline system or TSConnect, based on demographic
factors and their learning preferences6. The experimental mate-
rials consisted of video lectures recorded during the COVID-19
pandemic, covering topics from the latter half of the course curricu-
lum. Recruitment occurred early in the academic semester, and we
verified that none of the participants had prior exposure to these
materials, ensuring that the experimental content was independent
of the material covered in the first half of the course. Upon com-
pletion of the student experiments, we populated the instructor
interface of TSConnect with all collected feedback data. We then
conducted semi-structured interviews with four faculty members
(PI1 ∼ 4, three males and one female, average age of 35.4) who
teach the algorithm course at the local university. Together with
the instructors, we explored the instructor interface of TSConnect.
The entire study lasted approximately one hour for student partici-
pants and 30 minutes for instructor participants. Instructors and
students were compensated USD 8 and USD 5, respectively.

5.3 Task and Procedure
5.3.1 Task. In this study, participants were assigned to use either
the baseline system or TSConnect to engage with the same video
lecture on Network Flow. Participants were granted full control over
video playback, including variable speed settings replay and skip.
However, they were instructed to maintain focus throughout the
session, refraining from external communication or engagement
in unrelated activities. To incentivize engagement, participants
were informed that their compensation would be contingent upon
their performance in a post-study quiz (not actually exist). We
encouraged, but did not mandate, the use of the system’s feedback

6Learning preferences include students’ academic proficiency, their inclination to
seek instructor guidance when facing learning challenges, and their tendency for
autonomous learning.
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TSConnect Baseline
ID Gender Age Role Major ID Gender Age Role Major
PS1 Female 19 Undergraduate Computer Science PS2 Male 23 Graduate NLP
PS3 Male 23 Graduate HCI PS4 Female 26 Graduate Data Science
PS5 Female 25 Graduate HCI PS6 Female 21 Undergraduate Computer Science
PS7 Female 21 Undergraduate Computer Science PS8 Male 24 Graduate Biomedical Engineering
PS9 Male 25 Graduate NLP PS10 Male 21 Undergraduate Computer Science
PS11 Male 20 Undergraduate Computer Science PS12 Female 22 Undergraduate Computer Science
PS13 Female 23 Graduate NLP PS14 Female 24 Graduate HCI
PS15 Male 22 Undergraduate Electronic Engineering PS16 Male 25 Graduate Data Science
PS17 Male 21 Undergraduate Computer Science PS18 Male 20 Undergraduate Electronic Engineering
PS19 Male 24 Graduate Computer Vision PS20 Female 25 Graduate NLP
PS21 Female 26 Graduate Biomedical Engineering PS22 Male 22 Undergraduate Computer Science
PS23 Male 22 Undergraduate Biomedical Engineering PS24 Female 20 Undergraduate Computer Science
PS25 Male 26 Graduate Robotics PS26 Male 27 Graduate HCI
PS27 Female 23 Undergraduate Computer Science PS28 Male 22 Undergraduate Computer Science
PS29 Female 24 Graduate Data Science PS30 Female 23 Graduate Mathematics

Table 5: Student information in user study.

mechanisms for communicating with instructors. Participants were
assured this wouldn’t affect their compensation, but we emphasized
that their input would help improve future course versions.

5.3.2 Procedure. Before the study, student participants signed a
consent form and completed a pre-task demographic questionnaire.
We introduced the experimental task and system usage for each
condition. To gathermore data, both groupswere demanded tomark
all skeleton knowledge in the last chapter. Students using TSConnect
used the scoring module in the Knowledge View, while those using
the baseline system completed a self-assessment form with the
same criteria. Subsequently, all student participants completed a
post-task questionnaire. Two of the authors acted as experimenters
to ensure smooth progress and provided assistance as needed.

5.4 Measurement
We designed a 7-point Likert scale (1: Not at all/Strongly disagree,
7: Very much/Strongly agree, and a 10-point scale for workload-
related questions) post-task questionnaire to collect student par-
ticipants’ experience on the respective systems. First, we crafted
questions on Usability of the system referring the System Usabil-
ity Scale (SUS) including 1) Ease of use; 2) Learning support; 3)
System satisfaction; 4) Likelihood of future use. Second, referring
to the NASA-TLX survey [27], we propose questions for the effects
on students’ workload including 1) Cognitive load; 2) Workload;
3) Frustration level; 4)Performance. Third, in terms of Learning
Behavior, we design questions including 1)Encountered learning
difficulties; 2) Feedback willingness; 3)Clear problem identification;
4) Problem resolution; 5) More feedback than usual. Fourth, as for
System Design, we tailored questions concerning the Network
View and Knowledge View for participants using TSConnect, in-
cluding: 1) Intuitive visualization; 2) Convenience of interaction;
3) Overall helpfulness; 4) Mechanism Approval. Additionally, we
also included optional subjective questions for qualitative insights.
While the instructor end utilized final scores for retrospective visual

representation, the system backend server logged each score modi-
fication made by student participants. These granular operational
data provided crucial support for subsequent analyses.

6 Results and Analysis
For quantitative analysis, we employed theMann-WhitneyU test [37]
on post-task questionnaires responses besides descriptive statistics.
For qualitative analysis, instructors reviewed the student feedback
by TSConnect in the interview. We explored instructors’ perception
of feedback data in each system view and implications for their
future teaching. Two researchers independently coded interview
transcripts, followed iterative discussions to reach consensus for
thematic analysis [25].

6.1 RQ3: What is the usability and effectiveness
of the support system?

As shown in Figure 7-(a), the survey results presents participant
ratings of system usability with different systems. Our analysis
indicates that TSConnect did not result in statistically significant
changes in ‘Ease of Use’ or ‘System Satisfaction’. However, it did
demonstrate a significant enhancements in ‘Learning Support’ (U
= 188, p < 0.01) and ‘Future Use’ (U = 175, P < 0.05). To evaluate
the efficacy of TSConnect in facilitating learning, we conducted an
analysis of the collected mark data. This analysis uncovered the
following two primary findings.

6.1.1 [Finding 7] The Network View and Knowledge View,
significantly enhanced students’ capacity to overcome learn-
ing obstacles. We analyzed the knowledge marking logs from
participants using TSConnect, the results revealed instances of score
modifications with extended time intervals (exceeding 10 seconds),
with a trend towards lower scores after these modifications (occur-
rences per participant: M = 0.91 , SD = 0.78). This phenomenon may
indicate that participants gradually deepened their understanding
of the relevant knowledge while using the system. To isolate the
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Figure 7: Results of the (a) usability of usefulness of the system and (b) differences in self-evaluation score results among
participants after using different systems. The error bars indicate standard errors. (ns: p < .1; ∗: p < .05; ∗∗: p < .01)

potential effects of course progression itself, thereby more accu-
rately evaluating the unique contribution of the TSConnect system,
we further comparatively checked the knowledge self-assessment
data from both participant groups.

After the experimental tasks, both participant groups evaluated
26 skeleton knowledge items from the last session chapter. Our
analysis goal was to assess how introducing prerequisite relation-
ships and revealing hidden prerequisites affects learning outcomes.
We categorized knowledge based on their prerequisite relationship
complexity, which was determined by the sum of quantities of
incoming edges in the knowledge network (representing explicit
prerequisites), and hidden prerequisites. The top 40%were classified
as ‘complex’, with the rest as ‘simple’. Subsequently, we calculated
the average scores for participants from both groups across these
two categories. As illustrated in Figure 7-(b), participants using
TSConnect demonstrated superior overall knowledge mastery (U
= 64, p < 0.05) compared to the baseline condition (reflected in
lower scores) especially for ‘complex’ knowledge (U = 40, p < 0.01).
These finding suggests that the prerequisite assistance provided by
TSConnect effectively helped students elucidate the interconnec-
tions between knowledge concepts, enabling them to systematically
deconstruct and comprehend complex concepts, thereby fostering
a more structured learning process.

6.1.2 [Finding 8] TSConnect effectively enhances student-
teacher interaction, significantly increasing the amount of
proactive feedback from students. We conducted a quantitative
analysis of feedback data from both groups. Results indicate that the
baseline group provided slightly more text-based feedback through
the Comment Section (M = 1.87) compared to the TSConnect group
(M = 1.53), though this difference was not statistically significant
(p > 0.05). Furthermore, participants using TSConnect marked an
average of 2.53 knowledge (SD = 1.64).

The Network View and Knowledge View in TSConnect collectively
constituted an additional feedback channel. However, these new

channel did not significantly reduce the utilization of existing text-
based feedback. This may be attributed to the fact that text-based
feedback can encompass a broader range of complex information,
such as evaluations of instructor explanations, which cannot be
fully captured by a simple marking mechanism. Concurrently, the
operational simplicity of the marking mechanism (requiring only a
click to indicate comprehension level) proved more efficient than
composing text-based feedback, thereby implicitly lowering the
obstacle for student-teacher communication. Questionnaire results
indicate that on a 7-point Likert scale, participants found the design
of Network View and Knowledge View to be intuitive (M = 5.37, SD
= 1.51), with simple and user-friendly interactions (M = 5.73, SD
= 0.92). Notably, all participants expressed support for the use of
the marking mechanism for feedback (M = 5.48, SD = 1.04). An in-
depth analysis of students’ perspectives on these diverse feedback
channels will be presented in subsection 6.2.

6.2 RQ4-a: How do students perceive the
support system?

We conducted a comprehensive analysis of both quantitative scales
and open-ended questions from the questionnaire, aiming to thor-
oughly investigate the impact of TSConnect on student participants’
workload and their learning performance.

6.2.1 Effects on students’ workload. Figure 8-(b) visually compares
the workload differences between the baseline and TSConnect group.
Results reveals that TSConnect significantly increased both the
cognitive workload (U = 171, p < 0.05) and overall workload (U =
189, p < 0.01) for students completing learning tasks. This increase
could be attributed to the rich features and content provided by
TSConnect, which required participants to interact extensively with
the system, engaging with both textual and graphical information
beyond just watching videos.

Despite the increased workload, TSConnect group reported sig-
nificantly lower frustration level when completing learning tasks
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Figure 8: Results of (a) the effect of different systems on learning behavior, and (b) the effect on students’ cognitive load,
workload, students’ perceived level of task-related frustration, and the self-evaluation of their learning performance. The error
bars indicate standard errors. (ns: p < .1; ∗: p < .05; ∗∗: p < .01)

(U=54, p<0.05). Their self-evaluation of the overall learning perfor-
mance was superior to that of the baseline group (U=172, p<0.05).
These insights suggest that the [Finding 9] increased cognitive
engagement may lead to a more positive learning experience
and improved self-perceived learning outcomes.

6.2.2 Effects on students’ learning performance. Figure 8-(a) presents
a comparative analysis of learning behaviors between TSConnect
and baseline groups. The data indicates that both groups perceived
similar levels of difficulty in completing the learning tasks. How-
ever, in terms of feedback behavior, TSConnect group demonstrated
a notable advantage. Compared to their usual feedback patterns,
TSConnect group showed an increase in both the quantity (U=162,
p<0.05) and willingness (U=177, p<0.01) to provide feedback to
instructors during this experimental task, significantly surpassing
the baseline group. This finding highlights the potential value of
TSConnect in fostering student-teacher interaction. Although no
significant difference was observed between the two groups in
the dimension of ‘helping to clarify personal problem’, TSConnect
group reported an enhanced ability to independently resolve issues
during the learning process (U=185, p<0.01). This result aligns with
[Finding 1], further supporting the positive role of TSConnect in
cultivating students’ autonomous learning capabilities.

6.2.3 Participants’ opinion on system design. We conducted a the-
matic analysis of the TSConnect group’s responses to open-ended
questions in the post-task questionnaire. The results revealed that:

• 7 out of 15 participants provided positive evaluations of the
prerequisite dependency paths in the Network View, includ-
ing ‘Intuitiveness’(5), ‘Step-by-step Learning’(2), ‘Structured
Knowledge’(4) and ‘Attention Allocation’(1).

• 4 out of 15 participants appreciated the definitions and quizzes
in Knowledge View as as helpful learning supplements. One
student participant noted, “Quizzes are an effective learning
method. I usually reinforce my understanding through post-
class exercises. TSConnect integrates this directly into MOOC
learning, making knowledge consolidation more timely.”.

• 2 out of 15 participants innovatively utilized the marking
mechanism as a learning reminder tool besides the original
feedback role. One participant reported marking concepts
when encountering difficulties in immediate comprehension
during initial MOOC video viewing. Another participant
marked concepts that proved challenging during quizzes.
These opinion shows that the marking mechanism allows
students to prepare for subsequent in-depth understanding
without interrupting their current learning flow.

6.3 RQ4-b: How do instructors perceive the
support system?

In the interviews, we guided four instructor participants to engage
with the instructor end of TSConnect and explore student feedback
data. This process aimed to evaluate the system’s functionality and
potential impact from the instructor’s perspective. Results of the
thematic analysis reveals two following findings.

6.3.1 [Finding 10] TSConnect increased the quality and in-
terpretability of student feedback. All four participating in-
structors agreed that feedback collected by TSConnect was clearer
and more comprehensible than traditional methods. Specifically,
TSConnect enables instructors to analyze feedback within the con-
text of course and playback data, particularly play and pause behav-
iors, which are indicators of student engagement and effort. The
emphasized nodes in the Network View intuitively display students’
grasp of various knowledge concepts, making it easier for instruc-
tors to identify common challenges. PI3 said, “Previously, I’d simply
answer questions without much thought or adjusting future lessons.
But with TSConnect, I easily spot repeated issues, prompting me to
consider their causes and interconnections.” Furthermore, TSConnect
encourages students to provide more specific and focused feedback.
As PI2 noted: “Students no longer merely request general explanations,
but can clearly indicate which particular property or derivation step
they need detailed clarification on.”
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6.3.2 [Finding 11] TSConnect enhances instructors’ ability
to diagnose root causes of learning obstacles. During the in-
terviews, teachers interacted with TSConnect to explore potential
factors contributing to students’ learning difficulties below surface-
level feedback. For example, PI4 discovered an increase in replay
frequency during the 42 ∼ 44 minute interval. Upon examination,
the instructor found that this segment focused on explaining “Cut
Capacity” concept. Interestingly, theNetwork View displayed a light-
colored node for this knowledge, suggesting a high level of student
comprehension. PI4 re-evaluated the video segment and identified
potential issues with the instruction, especially the unclear mark
in the figure. This likely contributed to student confusion at initial.
Similarly, PI2 identified that the concept of “Net Flow” is inade-
quately explained, which serves as a hidden prerequisite in the
Network View. This instructional deficiency may hinder students’
comprehension of the teaching goal “Flow Lemma”.

6.4 RQ5: What impact does the support system
have on current teaching and learning
practices?

Beyond generating insights specific to the experimental course
videos, the interaction with TSConnect also provided valuable in-
spiration for enhancing current pedagogical practices. Moreover, it
prompted instructors to critically evaluate their established teach-
ing methodologies. Here are three potential impacts of TSConnect.

6.4.1 Impact 1: Avoid making and break strong assumptions
about students’ prior knowledge. Instructor often possess a
more extensive knowledge base than their students, which can
inadvertently lead to the the use of unfamiliar concepts during
instruction. This is the cognitive defect brought about by the curse
of knowledge, and is difficult for teachers to identify and solve
through their own efforts. As discussed in subsection 3.3, in existing
teaching process students rarely explicitly express that they have
encountered problems. TSConnect addresses this issue by fostering
student-teacher communication regarding learning challenges, po-
tentially reduces the time required for instructors to realize and
identify the knowledge gaps, thereby accelerating the development
of pedagogical expertise. Furthermore, it enhances instructors’ un-
derstanding of their student cohort and cultivates empathy. PI2 and
PI4 highlighted an additional benefit of the Network View feature
within TSConnect. Even without feedback data, this dependency
graph provides a valuable framework for instructors to proactively
assess the prerequisite knowledge of current learning objectives
in advance, helping them identify and address potential gaps that
could lead to cascading effects before they appear in the classroom.

6.4.2 Impact 2: Iterate and refine the long-term reusable
course materials and explanations. The instructors participat-
ing in this study are engaged in ongoing instructional responsibili-
ties for established courses. Except the initial offering of a course
necessitates overall slide preparation and content planning, sub-
sequent iterations typically involve tiny updates based on prior
teaching experiences. This approach is inherently subjective and
susceptible tomemory biases. TSConnect addresses these limitations
by facilitating the systematic collection of targeted feedback data.

It enables instructors to access and review student responses con-
tinuously, supporting targeted data-driven refinements to course
materials. Similar to the impact of prerequisite, contextual infor-
mation also influences student comprehension, as PI4 identified
issues related to inadequate figuremarking in subsection 6.3. TSCon-
nect’s functionality allows for post-session analysis, enabling timely
identification and rectification of such issues, thereby mitigating
potential confusion for future students. PI4 added, “It’s better to
reduce unnecessary cognitive load for students, allowing them to focus
on more complex concepts requiring deeper engagement.” PI1 also
mentioned this perspective, “Sometimes during lectures, I suddenly
come up with a better way to explain something. However, without
prior preparation, these last-minute changes can lead to disorganized
delivery and missed some key points. I know this can hurt student
understanding, but it’s hard to spot these issues in the moment, and I
often forget to address them afterward. A tool like this would help me
improve my teaching methods later on.”

6.4.3 Impact 3: Adopt a critical and selective approach when
utilizing the extensive array of MOOC resources. PI3, a rela-
tively novice instructor, reported regularly reviewing diverseMOOC
videos for pedagogical inspiration. However, PI2 acknowledged the
limitations of this approach, “The efficacy of instructional methods
is actually determined by student reception. Unfortunately, without
implementing these techniques in my own classroom, it’s challenging
to accurately assess their effectiveness.” This underscores the poten-
tial value of enhancing existing MOOC platforms with advanced
analytics tools for instructors. By video engagement metrics and
knowledge score visualizations, instructors could better evaluate
existing MOOC resources, discerning between effective and worse
segments within each video to facilitate a dual-pronged approach:
adopt exemplary teaching practices and avoid of common peda-
gogical pitfalls. Moreover, this data-driven approach would offer
instructors a broader perspective on typical student challenges
across various MOOCs, leading to more realistic expectations of
students and ultimately enhance the student learning experience.

7 Discussion and Limitation
7.1 Generalizability
TSConnect’s initialization process can be expanded to incorporate
not only video content but also slide presentations. This expansion
is feasible due to the fundamental similarity in data processing
procedures for both media types. Furthermore, by pre-extracting
knowledge dependency graphs from slides and leveraging advanced
streaming capture and processing technologies, TSConnect’s appli-
cability can extend beyond MOOCs to encompass real-time instruc-
tional settings, such as live-streamed lectures. This enhancement
significantly broadens the system’s potential deployment across
diverse educational contexts.

In the extraction of prerequisite knowledge, our methodology
prioritized definition content over property descriptions of con-
cepts. This approach was adopted in recognition of the varying
depths and breadths of conceptual understanding required at dif-
ferent educational levels, such as secondary and tertiary education.
Additionally, we deliberately limited our extraction to immediate
prerequisites, refraining from multi-level prerequisite relationships.
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We assume that secondary and deeper prerequisites often fall out-
side the immediate scope of a given lesson. When students identify
gaps in their foundational knowledge, they should seek supple-
mentary courses or materials. Also, instructors are not required to
closely track students’ mastery of these distant prerequisites.

7.2 System Design
Conventional learning materials such as textbooks and lecture
slides are readily accessible and independent of specific hardware
or teaching scenarios. These materials have been widely utilized to
identify in students’ post-class knowledge mastery gaps by previ-
ous work [6, 42] and instructors. This approach does not constitute
an innovation in our work. Instead, the core innovation of TSCon-
nect system lies in leveraging these established resources to bridge
teacher-student communication. This enables both parties to align
student learning needs during the regular teaching process with-
out introducing additional workflow requirements. Beyond merely
facilitating problem resolution, TSConnect aims to reveal the root
causes of learning difficulties through student feedback data, includ-
ing necessary prerequisite and teaching process, thereby enhancing
instructors’ understanding of their students and promoting critical
reflection on existing pedagogical practices.

Beyond validating the utility of the TSConnect through user stud-
ies, we garnered valuable insights for future enhancements. A key
improvement area is integrating three distinct feedback mecha-
nisms into a more cohesive system. For example, we could enhance
the textual feedback feature with natural language processing to
automatically identify and tag specific knowledge concepts. These
tags could be incorporated into the Network View using a scoring
conversion rule, enabling instructors to filter feedback by knowl-
edge concepts for targeted analysis. Furthermore, aligning knowl-
edge node markings with video content by timestamp would help
instructors pinpoint recurring concepts and their contextual chal-
lenges throughout the course progression. Expanding annotation
options for knowledge nodes beyond simple scoring could also
provide a deeper understanding of student learning needs.

Currently, TSConnect restricts students to viewing only their
own comments to reduce inhibition from peer feedback. However,
expanding user privileges to include broader access and peer dis-
cussions may be necessary. To deal with this potential modification
while maintaining the integrity of individual feedback, we could im-
plement a weighted comment mechanism that students would have
the option to endorse existing comments, increasing their signifi-
cance within the system. This feature offers an alternative metric
for assessing feedback prevalence and impact. On the instructor
end, endorsed comments could be highlighted using advanced data
visualization techniques, enabling educators to quickly identify
high-impact feedback.

7.3 Limitation
This study has several limitations. First, TSConnect’s data process-
ing capabilities encounter challenges when applied toMOOC videos
that involve extensive handwritten board work. These difficulties
arise from multiple factors: 1) Optical Character Recognition strug-
gles with varied handwriting styles. 2) Perspective distortions of

board content due to the camera’s positioning. 3) Frequent oc-
clusions caused by instructor movement. A potential solution to
address these issues involves incorporating audio processing ca-
pabilities. This could begin with Automatic Speech Recognition to
transcribe the instructor’s speech, followed by Natural Language
Processing techniques to extract key knowledge concepts from
the transcript. However, this audio-based approach was not im-
plemented or assessed in the current study. Second, the quizzes in
the Knowledge View are generated autonomously by a LLM, which
can sometimes result in misalignment between the quiz focus and
the intended conceptual assessment, incorrect answers, or unsolv-
able questions. Future improvements could refine this feature by
integrating Retrieval-Augmented Generation (RAG) methods that
utilize established question banks. However, direct indexing of
matching questions may not be straightforward. Third, the cur-
rent implementation of the Knowledge View primarily emphasizes
concept definitions, neglecting detailed properties of those con-
cepts. In practice, a student’s ability to comprehend and apply a
concept’s properties often serves as a more accurate indicator of
their learning progress than merely understanding its definition.
Future iterations could enhance the system by integrating more
comprehensive property-based assessments to better capture stu-
dents’ mastery levels.

Additionally, the formative study revealed that while instructors
are aware of the curse of knowledge phenomenon, they persistently
struggle to overcome this cognitive bias due to challenges in im-
proving teacher-student interactions. In response, we developed
TSConnect with an emphasis on facilitating student feedback, and
subsequent user study validated its effectiveness from the student
perspective. However, due to time constraints, we were unable
to implement TSConnect in real educational settings, limiting our
ability to evaluate whether long-term usage could effectively mit-
igate the curse of knowledge and enhance teachers’ pedagogical
competencies and empathy towards students. A comprehensive
assessment of these aspects would necessitate the integration of
additional educational metrics and longitudinal research method-
ologies.

8 Conclusion
We present TSConnect, an adaptable interactive MOOC learning sys-
tem designed to bridge the communication gap between students
and instructors, reducing the obstacles instructors face in address-
ing the cognitive bias known as the curse of knowledge in their
teaching practices. Our contributions are summarized as follows.
First, we conducted an exploratory survey and semi-structured
interviews to identify the key factors and practical challenges that
hinder current educational practices from mitigating this cognitive
bias. Based on these insights, we designed and implemented TSCon-
nect, which integrates three feedback channels: playback behavior
tracking, textual comments, and knowledge concept marking. The
system also visualizes prerequisite relationships between knowl-
edge concepts, uncovering hidden prerequisites that promote more
structured learning. Third, we conducted a between-subjects user
study with 30 students and interviewed four instructors to evaluate
the effectiveness of our design. We explored how both students
and instructors perceive the system in a simulated MOOC learning

1350



TSConnect IUI ’25, March 24–27, 2025, Cagliari, Italy

task and examined its potential impact on pedagogical practices.
Our findings indicate that TSConnect encourages students to pro-
vide more frequent and clearer feedback, improving instructors’
understanding of student learning progress.
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A Video Processing
To roughly check the rationality of the maximum interframe differ-
ence algorithm and the threshold, we conducted a manual review
of the 69 key frames extracted from a sample video. Upon analysis,
29 key frames were found to be duplicates, with changes limited
to instructor gesture and cursor movements, window scaling, and
shifting. Additionally, we observed that the server discarded 9 out
of 41 slides, deeming them redundant. The content examination
revealed that the discarded slides only had minor variations from
their adjacent ones such as non-essential textual elements or color
variations. This exclusion did not impede the subsequent processes
of content recognition and knowledge extraction, as the key infor-
mation was preserved in the remaining key frames.

(b) Color variation

Reserved Discarded

(a) Window scale and handwritten mark

DuplicateReserved

Figure 9: Illustrations of abnormal key frame extraction out-
comes. (a) Key frame duplication: the server retains two in-
stances of slide #5 as key frames due to significant differences
in window scaling and the presence of handwritten annota-
tions. (b) Key frame discard: slide #25 was discarded as a key
frame candidate due to limited edge color variations.

B Students’ Preferences for Assessing Their
Knowledge Mastery.

Figure 10: Question Description: If you are required to self-
assess and report your knowledge mastery, which method
do you think is more reasonable?
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